Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 270
Filtrar
1.
Ageing Res Rev ; 97: 102298, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604453

RESUMO

Alzheimer's disease (AD) presents a complex pathology involving amyloidogenic proteolysis, neuroinflammation, mitochondrial dysfunction, and cholinergic deficits. Oxidative stress exacerbates AD progression through pathways like macromolecular peroxidation, mitochondrial dysfunction, and metal ion redox potential alteration linked to amyloid-beta (Aß). Despite limited approved medications, heterocyclic compounds have emerged as promising candidates in AD drug discovery. This review highlights recent advancements in synthetic heterocyclic compounds targeting oxidative stress, mitochondrial dysfunction, and neuroinflammation in AD. Additionally, it explores the potential of nanomaterial-based drug delivery systems to overcome challenges in AD treatment. Nanoparticles with heterocyclic scaffolds, like polysorbate 80-coated PLGA and Resveratrol-loaded nano-selenium, show improved brain transport and efficacy. Micellar CAPE and Melatonin-loaded nano-capsules exhibit enhanced antioxidant properties, while a tetra hydroacridine derivative (CHDA) combined with nano-radiogold particles demonstrates promising acetylcholinesterase inhibition without toxicity. This comprehensive review underscores the potential of nanotechnology-driven drug delivery for optimizing the therapeutic outcomes of novel synthetic heterocyclic compounds in AD management. Furthermore, the inclusion of various promising heterocyclic compounds with detailed ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) data provides valuable insights for planning the development of novel drug delivery treatments for AD.

2.
Mol Divers ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642309

RESUMO

One of the most perilous illnesses in the world is cancer. The cancer may be associated with the mutation of different genes inside the body. The PIM kinase, also known as the serine/threonine kinase, plays a critical role in the biology of different kinds of cancer. They are widely distributed and associated with several biological processes, including cell division, proliferation, and death. Aberration of PIM-1 kinase is found in varieties of cancer. Prostate cancer and leukemia can both be effectively treated with PIM-1 kinase inhibitors. There are several potent compounds that have been explored in this review based on heterocyclic compounds for the treatment of prostate cancer and leukemia that have strong effects on the suppression of PIM-1 kinase. The present review summarizes the PIM-1 kinase pathway, their inhibitors under clinical trial, related patents, and SAR studies of several monocyclic, bicyclic, and polycyclic compounds. The study related to their molecular interactions with receptors is also included in the present manuscript. The study may be beneficial to scientists for the development of novel compounds as PIM-1 inhibitors in the treatment of prostate cancer and leukemia.

3.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474626

RESUMO

The current study describes a novel and eco-conscious method to synthesize 1,4-dihydropyridine derivatives utilizing an aqueous micellar solution containing aluminum dodecyl sulfate, Al(DS)3, using readily available starting material. The final products were synthesized with excellent yields within remarkably quick reaction durations, promoting remarkable atom economy and minimizing environmental impacts. The present protocol has several advantages over other methodologies in terms of high yield (up to 97%) with excellent purity. Further, the synthesized 1,4-DHPs exhibit favorable to excellent resistance against examined bacterial and fungal species. Intriguingly, polar groups on the phenyl ring (5b, 5c, 5i and 5j) make the 1,4-DHPs equally potent against the microbes as compared to the standard drugs.


Assuntos
Di-Hidropiridinas , Compostos Heterocíclicos , Micro-Ondas , Alumínio
4.
Chembiochem ; : e202400062, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536125

RESUMO

This study evaluated the potential of isoCoQ-Carbazole, a diheterocyclic analog of isoCA-4, as an anti-tumor agent. To overcome its low aqueous solubility, liposomes were developed as a delivery system for the compound. In vitro experiments showed that loaded liposomes exhibited similar activity to the free form on multiple human tumor cell lines. In vivo experiments using a palliative intratumoral injection chemotherapy approach further demonstrated that isoCoQ-Carbazole loaded liposomes significantly reduced tumor growth in a CA-4-resistant HT29 cell model, without inducing any observable toxicity or weight loss in the treated mice. These findings suggest that liposomal isoCoQ-Carbazole may hold promise as a potential therapeutic agent for the treatment of inoperable, radiation-insensitive cancers.

5.
Carbohydr Res ; 538: 109077, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479043

RESUMO

In this study, carboxylic acids compounds were grafted onto chitooligosaccharides to prepare seven phenyl/indolyl-acyl chitooligosaccharides derivatives. The structures of the derivatives were characterized by IR spectroscopy, 13C NMR and elemental analysis. Meanwhile, antioxidant activities in vitro of the novel derivatives were analyzed. Compared to COS and carboxylic acid, the derivatives showed higher scavenging capacity for superoxide anion and DPPH radicals, with scavenging rates of 59.39% and 94.86%, respectively. The hydroxyl radical scavenging ability of the derivatives was only 18.89%. The antifungal activities of chitooligosaccharide derivatives against Diaporthe batatas and Phytophthora capsici were studied by the growth rate method. Compared with chitooligosaccharide itself, derivatives were inhibited by 97.77% and 100%. The above results showed that chitooligosaccharide derivatives have good biocompatibility and can be used in food, agriculture and medicine.


Assuntos
Antioxidantes , Quitosana , Antioxidantes/farmacologia , Antioxidantes/química , Antifúngicos/farmacologia , Antifúngicos/química , Quitosana/farmacologia , Quitosana/química , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Quitina
6.
Front Chem ; 12: 1371377, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545466

RESUMO

Urease, a nickel-dependent enzyme found in various life forms, catalyzes urea breakdown, concluding nitrogen metabolism by generating ammonia and carbamate. This process causes a rise in pH, supports the survival of pathogens, and can lead to infections such as gastric disorders like ulcers and cancer in humans. Helicobacter pylori employs urease for survival in the acidic environment of the stomach and in protein synthesis. To treat such infections and inhibit the growth of pathogens, it is mandatory to obstruct urease activity; therefore, derivatives of 1-(3-nitropyridin-2-yl)piperazine were synthesized (5a-o; 7a-k). All these newly synthesized compounds were investigated for urease inhibition by in vitro inhibition assays. The results showed that 5b and 7e are the most active inhibitors, having IC50 values of 2.0 ± 0.73 and 2.24 ± 1.63 µM, respectively. These IC50 values are lower than the IC50 value of the standard thiourea, which was 23.2 ± 11.0 µM. The hemolysis potential of 5b, 5c, 5i, 7e, and 7h was also determined; 7e and 7h exhibited good biocompatibility in human blood cells. Through in silico analysis, it was shown that both these potent inhibitors develop favorable interactions with the active site of urease, having binding energies of -8.0 (5b) and -8.1 (7e) kcal/mol. The binding energy of thiourea was -2.8 kcal/mol. Moreover, 5b and 7e have high gastrointestinal permeability as predicted via computational analysis. On the other hand, the IC50 value and binding energy of precursor compound 3 was 3.90 ± 1.91 µM and -6.1 kcal/mol, respectively. Consequently, 5b and 7e can serve as important inhibitors of urease.

7.
Bioresour Technol ; 399: 130559, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460566

RESUMO

Hydrothermal liquefaction (HTL) shows promise for converting wet biomass waste into biofuel, but the resulting high-strength process water (PW) requires treatment. This study explored enhancing energy recovery by anaerobic digestion using semi-batch reactors. Co-digesting manure with HTL-PW from wheat straw-manure co-HTL yielded methane (43-49% of the chemical oxygen demand, COD) at concentrations up to 17.8 gCOD·L-1, whereas HTL-PW from sewage sludge yielded methane (43% of the COD) up to only 12.8 gCOD·L-1 and complete inhibition occurred at 17 gCOD·L-1. Microbial community shifts confirmed inhibition of methanogenic archaea, while hydrolytic-fermentative bacteria were resilient. Differences in chemical composition, particularly higher levels of N-containing heterocyclic compounds in PW of sewage sludge, likely caused the microbial inhibition. The considerable potential of combining HTL with anaerobic digestion for enhanced energy recovery from straw-manure in an agricultural context is demonstrated, yet sewage sludge HTL-PW requires more advanced approaches to deal with methanogenesis inhibitors.


Assuntos
Esgotos , Águas Residuárias , Esgotos/microbiologia , Triticum , Esterco , Anaerobiose , Reatores Biológicos , Metano , Biocombustíveis
8.
Environ Technol ; : 1-14, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312073

RESUMO

Spirulina powder emerged as a novel and suitable co-metabolism substance significantly enhancing the anaerobic degradation of specific nitrogen heterocyclic compounds. On the addition of 1.0 mg/L of Spirulina powder, the reactor demonstrated optimal degradation efficiency for quinoline and indole, achieving ratios of 99.77 ± 1.83% and 99.57 ± 1.98%, respectively. Moreover, the incorporation of Spirulina powder resulted in increased concentrations of mixed liquor suspended solids, mixed liquor volatile suspended solids, proteins, and polysaccharides in anaerobic sludge. In addition, Spirulina powder led to reduced levels of Acinetobacter and enriched Aminicenantes genera incertae sedis, Levilinea, and Longilinea. The analysis of the archaeal community structure confirmed that the addition of Spirulina powder increased archaeal sequences, fostering greater richness and diversity in the archaeal community.

9.
Chem Biol Drug Des ; 103(2): e14479, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38361139

RESUMO

Depression is not similar to daily mood fluctuations and temporary emotional responses to day-to-day activities. Depression is not a passing problem; it is an ongoing problem. It deals with different episodes consisting of several symptoms that last for at least 2 weeks. It can be seen for several weeks, months, or years. At its final stage, or can say, in its worst condition, it can lead to suicide. Antidepressants are used to inhibit the reuptake of the neurotransmitters by some selective receptors, which increase the concentration of specific neurotransmitters around the nerves in the brain. Drugs that are currently being used for the management of various types of depression include selective serotonin reuptake inhibitors, tricyclic antidepressants, atypical antidepressants, serotonin, noradrenaline reuptake inhibitors, etc. In this review, we have outlined different symptoms, causes, and recent advancements in nitrogen-containing heterocyclic drug candidates for the management of depression. This article highlights the various structural features along with the structure-activity relationship (SAR) of nitrogen-containing heterocyclics that play a key role in binding at target sites for potential antidepressant action. The in silico studies were carried out to determine the binding interactions of the target ligands with the receptor site to determine the potential role of substitution patterns at core pharmacophoric features. This article will help medicinal chemists, biochemists, and other interested researchers in identifying the potential pharmacophores as lead compounds for further development of new potent antidepressants.


Assuntos
Antidepressivos , Depressão , Humanos , Depressão/tratamento farmacológico , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Antidepressivos Tricíclicos , Inibidores Seletivos de Recaptação de Serotonina , Serotonina
10.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399403

RESUMO

This work describes the design and synthesis of three series of hybrids of thienopyrimidines and sulfonamides. Dihydrofolate reductase enzyme was selected as a target for the in-silico screening of the synthesized thienopyrimidine-sulfonamide hybrid as an antibacterial, while squalene epoxidase was selected as an antifungal target protein. All screened compounds showed promising binding affinity ranges, with perfect fitting not exceeding 1.9 Å. The synthesized compounds were tested for their antimicrobial activity using agar well diffusion and minimum inhibitory concentration tests against six bacterial strains in addition to two Candida strains. Compounds 8iii and 12ii showed varying degrees of inhibition against Staphylococcus aureus and Escherichia coli bacterial strains, whereas the best antifungal activity against Candida was displayed by compound 8iii. Compound 12ii, the cyclohexathienopyrimidine coupled with sulfadiazine at position 3, has the best antibacterial activity, which is consistent with molecular docking results at the active site of the oxidoreductase protein. Interestingly, compound 12ii also has the highest docking binding energy at the antifungal squalene epoxidase active site. Investigating the physicochemical properties of the synthesized hybrids revealed their high tolerability with cell membranes, and moderate to poor oral bioavailability, and that all are drug-like candidates, among which 4i, the cyclohexathieno[2,3-d] pyrimidine core with sulphaguanidine incorporated at position 4, recorded the best score (1.58).

11.
Chem Biodivers ; 21(3): e202302071, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38230843

RESUMO

Continuing our studies in the field of new heterocyclic compounds with biological interest, herein we report the synthesis and anticancer activity of new N- and S-substituted derivatives of tetracyclic pyrido[3',2' : 4,5]thieno[3,2-d]pyrimidines. In this regard, starting from the thieno[2,3-b]pyridine-2-carboxylates, the corresponding 8(9)-aminopyrido[3',2' : 4,5]thieno[3,2-d]pyrimidin-7(8)-ones, as well as chloro derivatives were obtained. Based on the latter, amino, hydrazino and S-alkyl derivatives of pyrido[3',2' : 4,5]thieno[3,2-d]pyrimidines were synthesized subsequently. The current study focuses on identifying the potential of thieno[3,2-d]pyrimidine derivatives primarily towards ATR kinase inhibition, through computational predictions, followed by synthesis and cancer cell viability studies, along with an aim to develop the core as PIKK inhibitors for cancer therapy.


Assuntos
Antineoplásicos , Neoplasias , Relação Estrutura-Atividade , Pirimidinas/farmacologia , Piridinas , Antineoplásicos/farmacologia
12.
Mini Rev Med Chem ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38185891

RESUMO

BACKGROUND: Heterocyclic compounds and their derivatives play a significant role in the design and development of novel quinoline drugs. Among the various pharmacologically active heterocyclic compounds, quinolines stand out as the most significant rings due to their broad pharmacological roles, specifically antitubercular activity, and their presence in plant-based compounds. Quinoline is characterized by a benzene ring fused to a pyridine ring, with both rings sharing two adjacent carbon atoms. Other names, such as benzpyridine, benzopyridine, and 1-azanaphthalene also know it. The importance of quinoline lies in its incorporation as a key component in various natural compounds found in medicinal plant families like Fumariaceae, Berberidaceae, Rutaceae, Papavaraceae, and others. OBJECTIVE: This article is expected to have a significant impact on the advancement of effective antitubercular medications. Through harnessing the potent activity of quinoline derivatives, the research aims to make valuable contributions to combating tuberculosis more efficiently and ultimately reducing the global burden of this infectious disease. METHODS: Numerous nitrogen-containing heterocyclic compounds exhibit significant potential as antitubercular agents. These chemicals have fused aromatic nitrogen-heterocyclic nuclei that can change the number of electrons they have, which can change their chemical, physical, and biological properties. This versatility arises from their ability to bind to receptors in multiple modes, a critical aspect of drug pharmacological screening. Among these compounds, quinoline stands out as it incorporates a stable fusion of a benzene ring with a pyridine nucleus. Quinolines have demonstrated a diverse range of pharmacological activities, including but not limited to anti-tubercular, antitumor, anticoagulant, anti-inflammatory, antioxidant, antiviral, antimalarial, anti-HIV, and antimicrobial effects. RESULTS: Some molecules, such as lone-paired nitrogen species, include pyrrole, pyrazole, and quinoline. These molecules contain oxygen and take part in metabolic reactions with other molecules inside the cell. However, an excessive accumulation of reactive nitrogen species can lead to cytotoxicity, resulting in damage to essential biological macromolecules. Among these compounds, quinoline stands out as the oldest and most effective one, exhibiting a wide range of beneficial properties such as antitubercular, antimicrobial, anti-inflammatory, antioxidant, analgesic, and anticonvulsant activities. Notably, naturally occurring quinoline compounds, such as quinine, have proven to be potent antimalarial drugs. CONCLUSION: This review highlights quinoline derivatives' antitubercular potential, emphasizing recent research advancements. Utilizing IC50 values, the study underscores the efficacy of various quinoline substitutions, hybrids, and electron-withdrawing groups against MTB H37Rv. Continued research is essential for developing potent, low-toxicity quinoline derivatives to combat tuberculosis.

13.
J Biomol Struct Dyn ; : 1-12, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38260972

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease and has devastating impacts on the elderly population. During the last two decades, there has been a significant focus on developing effective and safe treatments for AD. Acetylcholinesterase (AChE) has been identified as one of the primary therapeutic targets for developing drug candidates for AD. However, there is still a need for more efficient therapies. In this study, our aim is to design a new series of heterocyclic-based AChE inhibitors inspired by a standard drug. Here, we carried out molecular docking, drug-likeliness characteristics, and molecular dynamics (MD) to predict important pharmacophore features and understand the inhibitory mechanism of the designed inhibitors towards the AChE. We have designed 112 new derivatives by replacing the piperidine moiety of Donepezil with the different five and six-membered heterocyclic rings and selected 15 compounds that show higher or comparable docking scores as compared to standard Donepezil and pose no risk for carcinogenicity. Furthermore, MD results imply the structural stability of the selected docked complexes and seven exhibit a stronger binding affinity towards the AChE than Donepezil. Thus, heterocyclic-based derivatives based on oxazole, pyrazole, and tetrahydropyran may be potential therapeutic candidates for AD. Our structure-based drug design approach allows us to identify and gain insight into the structural stability of the inhibitor-protein complex and the inhibition mechanism of the newly designed inhibitors. The present finding might be an initial selection for developing a new inhibitor for AD and provide a direction for further experiments on its biological activities.Communicated by Ramaswamy H. Sarma.

14.
Chem Biol Interact ; 387: 110796, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37951333

RESUMO

Angiogenesis is considered one of the hallmarks of cancer, assisting tumor progression and metastasis. The mesoionic compound, MI-D, can induce cell death and provoke cytoskeletal and metabolic changes in cancer cells. Using in vitro and in vivo models, this study aimed to evaluate the effects of MI-D on the viability of human endothelial cells (EC) and its ability to inhibit tumor-induced angiogenesis induced by tumoral cells. For in vitro analysis, colon carcinoma (HT29) and endothelial (EA.hy926) cells were used as the tumoral and angiogenesis models, respectively. To evaluate cytotoxicity, methylene blue viability stain and annexin-V/7AAD tests were performed with both cell types. For the angiogenesis experiments, scratch wound healing and capillary tube-like formation assays were performed with the EC. The in vivo tests were performed with the chorioallantoic membrane (HET-CAM) methodology, wherein gelatin sponge implants containing MI-D (5, 25, and 50 µM), HT29 cells, or both were grafted in the CAM. Our data showed that MI-D induced apoptosis in both endothelial and colon carcinoma cells, with a strong cytotoxic effect on the tumoral lineage. The drug inhibited the EC's migration and capillary-like structure formation in vitro. In the HET-CAM assays, MI-D reduced the number of blood vessels in the membrane when grafted alone and accompanied by tumor cells. In this study, MI-D interfered in important steps of angiogenesis, such as maintenance of endothelial cell viability, migration, formation of capillary-like structures, as well tumor-induced neovascularization, reinforcing the hypothesis that MI-D might act as an inhibitor of angiogenesis, and a potential antitumor agent.


Assuntos
Antineoplásicos , Carcinoma , Humanos , Células Endoteliais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Movimento Celular , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Antineoplásicos/uso terapêutico , Carcinoma/metabolismo , Células Endoteliais da Veia Umbilical Humana , Proliferação de Células
15.
Curr Org Synth ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-38037905

RESUMO

1, 3, 4-oxadiazole and its derivatives have significant anti-inflammatory and antimicrobial property. Their precise mechanism of action is not known but it is postulated that they act by inhibiting the biosynthesis of certain prostaglandins. 1, 3, 4-oxadiazoles are a class of heterocyclic compounds with wide variety of biological and pharmacological activities. They have been reported to possess analgesic, antimicrobial, antipyretic and anti-inflammatory properties. These compounds are also active against a number of other inflammatory conditions such as arthritis, gout etc. A wide variety of these compounds have been synthesized and some of them are under clinical trials. In this review article, anti-inflammatory and antimicrobial activity of the 1, 3, 4- oxadiazole shall be discussed.

16.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139243

RESUMO

Thiazole and piperazine are two important heterocyclic rings that play a prominent role in nature and have a broad range of applications in agricultural and medicinal chemistry. Herein, we report the parallel synthesis of a library of diverse piperazine-tethered thiazole compounds. The reaction of piperazine with newly generated 4-chloromethyl-2-amino thiazoles led to the desired piperazine thiazole compounds with high purities and good overall yields. Using a variety of commercially available carboxylic acids, the parallel synthesis of a variety of disubstituted 4-(piperazin-1-ylmethyl)thiazol-2-amine derivatives is described. the screening of the compounds led to the identification of antiplasmodial compounds that exhibited interesting antimalarial activity, primarily against the Plasmodium falciparum chloroquine-resistant Dd2 strain. The hit compound 2291-61 demonstrated an antiplasmodial EC50 of 102 nM in the chloroquine-resistant Dd2 strain and a selectivity of over 140.


Assuntos
Antimaláricos , Antimaláricos/química , Piperazina , Tiazóis/química , Cloroquina/farmacologia , Cloroquina/química , Plasmodium falciparum
17.
Pharmaceuticals (Basel) ; 16(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38139794

RESUMO

Artur Silva's research group has a long history in the field of medicinal chemistry. The development of new synthetic methods for oxygen (mostly polyphenols, e.g., 2- and 3-styrylchromones, xanthones, flavones) and nitrogen (e.g., pyrazoles, triazoles, acridones, 4-quinolones) heterocyclic compounds in order to be assessed as antioxidant, anti-inflammatory, antidiabetic, and anticancer agents has been the main core work of our research interests. Additionally, the synthesis of steroid-type compounds as anti-Alzheimer drugs as well as of several chromophores as important dyes for cellular imaging broadened our research scope. In this review article, we intend to provide an enlightened appraisal of all the bioactive compounds and their biological properties that were synthesized and studied by our research group in the last two decades.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38151832

RESUMO

BACKGROUND: Cyclodextrins selectively bind with reactants and facilitate chemical reactions through supramolecular catalysis, similar to the mechanisms employed by enzymes. In this paper, ß-cyclodextrin was used as a supramolecular catalyst in water as a green, reusable, and ecofriendly solvent system to synthesize spiro-benzimidazoquinazolinones and spiro-benzothiazoloquinazolinones. OBJECTIVE: A supramolecular catalyst ß-cyclodextrin (ß-CD) is used to synthesize spiro- benzimidazoquinazolinones and spiro-benzothiazoloquinazolinones via multicomponent reaction involving the condensation of dimedone, isatin, and 2-aminobenzimidazole/2-aminobenzothiazole. METHODS: In a 50 mL round bottom flask were added the respective mixture of substituted isatin (1 mmol), dimedone (1mmol), and 2-aminobenzimidazole/2-aminobenzothiazole (1 mmol) in water (5ml) containing ß-CD (113 mg, 10 mol. %) was stirred at 60oC for 30 min. The desired product was obtained with excellent yield. After completion of the reaction (monitored by TLC), the reaction mixture was quenched with water and extracted with ethyl acetate (4X5ml). The combined organic layers were washed with brine solution, dried over anhydrous Na2SO4 and evaporated under reduced pressure. The crude product was purified by silica gel chromatography. RESULTS: ß-cyclodextrin catalyst showed very good efficiency in the synthesis of the desired compounds and can be easily recovered and reused at least five times with minimal deactivation in catalytic activity. CONCLUSION: The catalyst demonstrated remarkable effectiveness in producing the target compounds and conducting the reaction with different initial substances, resulting in excellent yields of the products, thereby confirming the broad applicability and versatility of this method.

19.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4115-4123, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802779

RESUMO

Eight heterocyclic compounds and twelve phenolic glycosides were separated from the water extract of Dendrobium officinale flowers through chromatographic techniques, such as Diaion HP-20 macroporous adsorption resin column chromatography(CC), silica gel CC, ODS CC, Sephadex LH-20 CC, and preparative high performance liquid chromatography(PHPLC). According to the spectroscopic analyses(MS, ~1H-NMR, and ~(13)C-NMR) and optical rotation data, the compounds were identified as dendrofurfural A(1), 2'-deoxyadenosine(2), 4-[2-formyl-5-(hydroxymethyl)-1H-pyrrol-1-yl] butanoic acid(3), 4-[2-formyl-5-(methoxymethyl)-1H-pyrrol-1-yl] butanoic acid(4), 1-(2-hydroxyethyl)-5-(methoxymethyl)-1H-pyrrole-2-carbaldehyde(5), 5-(methoxymethyl)-1H-pyrrole-2-carbaldehyde(6), methyl 5-(hydroxymethyl)-furan-2-carboxylate(7),(S)-5-hydroxymethyl-5H-furan-2-one(8), 2-methoxyphenyl-1-O-ß-D-glucopyranoside(9), arbutin(10), isotachioside(11), 2,6-dimethoxy-4-hydroxyphenol-1-O-ß-D-glucopyranoside(12), orcinol glucoside(13), tachioside(14), gastrodin(15), 4-O-ß-D-glucopyranosylvanillyl alcohol(16), 2,6-dimethoxy-4-hydroxymethylphenol-1-O-ß-D-glucopyranoside(17), icariside D_2(18), 4-formylphenyl-ß-D-glucopyranoside(19), and vanillin-4-O-ß-D-glucopyranoside(20). Among them, compound 1 is a new furfural benzyl alcohol condensate, with the skeleton first found in Dendrobium. Compounds 2-9, 11, 13, and 19 are reported from Dendrobium for the first time, and compounds 14 and 18 are reported for the first time from D. officinale. Compounds 11 and 14 showed moderate DPPH radical scavenging capacity, and compounds 11-14 demonstrated potent ABTS radical scavenging capacity, possessing antioxidant activity.


Assuntos
Dendrobium , Compostos Heterocíclicos , Ácido Butírico , Glicosídeos/análise , Fenóis/análise , Flores/química
20.
J Fluoresc ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37837509

RESUMO

A benzene ring and a lactone ring combine to form the chemical coumarin. Dye lasers have made significant advances in laser technology. The coumarin molecule itself is a non-fluorescent but it displays high fluorescence when electron-denoting substituents such as sulfonamide, benzopyrone, amine, benzothiazole, hydroxyl, methoxy are substituted at various positions. Substituted coumarin possesses the highest energy properties, photostability, and alteration in electron mobility, and therefore could be effectively used as dye lasers. These are considered some of the best fluorophores due to their outstanding photophysical and photochemical properties, which include high fluorescence quantum yields, great photostability, good functionality, and a wide spectrum range. Various inorganic materials are used in classic laser technology to generate the necessary emission. Inorganic lasers come in various types and can emit light in the electromagnetic spectrum's ultraviolet, visible, or infrared parts. Inorganic lasers have certain limitations, which is why coumarin lasers are becoming increasingly popular due to their many advantages. Compared to inorganic lasers, dye lasers offer far better tunability and cover the entire visible and near-infrared range. They only emit at very few specific wavelengths and in extremely narrow bands. The property is therefore presented in this review.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...